Metal Ni-loaded g-C3N4 for enhanced photocatalytic H2 evolution activity: the change in surface band bending.

نویسندگان

  • Lingling Bi
  • Dandan Xu
  • Lijing Zhang
  • Yanhong Lin
  • Dejun Wang
  • Tengfeng Xie
چکیده

A series of Ni@g-C3N4 composites were synthesized by a simple solvent thermal method using melamine and acetylacetone nickel as precursors. The results of X-ray diffraction, transmission electron microscopy and high resolution transmission electron microscopy indicate that Ni was successfully loaded on g-C3N4. And the Ni loaded greatly enhances the photocatalytic H2 evolution activity of g-C3N4 compared to the pure g-C3N4. In order to study the role of Ni, the surface photovoltage, the surface photocurrent and photoluminescence measurements were used to investigate the photogenerated charge properties of g-C3N4. What is more, Mott-Schottky plots and work function measurements confirmed the surface band bending change of g-C3N4 contacting with Ni. Those results demonstrate that Ni coating deepens surface band bending of g-C3N4, resulting in higher separation efficiency of photogenerated charge carriers, which is contributed to the enhanced photocatalytic H2 evolution activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PtNi Alloy Cocatalyst Modification of Eosin Y-Sensitized g-C3N4/GO Hybrid for Efficient Visible-Light Photocatalytic Hydrogen Evolution

An economic and effective Pt-based alloy cocatalyst has attracted considerable attention due to their excellent catalytic activity and reducing Pt usage. In this study, PtNi alloy cocatalyst was successfully decorated on the g-C3N4/GO hybrid photocatalyst via a facile chemical reduction method. The Eosin Y-sensitized g-C3N4/PtNi/GO-0.5% composite photocatalyst yields about 1.54 and 1178 times h...

متن کامل

The facile synthesis of mesoporous g-C3N4 with highly enhanced photocatalytic H2 evolution performance.

Mesoporous g-C3N4 has been obtained by a facile sucrose-mediated approach via thermal condensation of sucrose and melamine for the first time. The mesoporous g-C3N4 presents a much higher BET surface area and displays highly enhanced photocatalytic H2 evolution performance.

متن کامل

Ag2S/g-C3N4 composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag2S formed by simultaneous photodeposition.

Without Pt as cocatalyst, the photocatalytic hydrogen evolution activity of graphitic carbon nitride (g-C3N4) or even its composite is normally rather low (<1 μmol h(-1)). Exploring Pt-free cocatalysts to substitute precious Pt is of great importance in the photocatalytic field. In the present work, Ag2S-modified g-C3N4 (Ag2S/g-C3N4) composite photocatalysts were prepared via a simple precipita...

متن کامل

Water-assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity.

Graphitic carbon nitride (g-C3N4) is a visible light photocatalyst, limited by low activity mainly caused by rapid recombination of charge carriers. In the present work, honeycomb-like g-C3N4 was synthesized via thermal condensation of urea with addition of water at 450 °C for 1 h. Prolonging the condensation time caused the morphology of g-C3N4 to change from a porous honeycomb structure to a ...

متن کامل

Nickel-supported carbon nitride photocatalyst combined with organic dye for visible-light-driven hydrogen evolution from water.

A noble-metal-free photocatalytic H2 production system consisting of a Ni-based catalyst, visible-light-responsive organic dye, and graphitic carbon nitride (g-C3N4) as a support has been developed. Characterization by means of XAFS revealed that the deposition of a trinuclear Ni precursor complex, Ni(NiL2)2Cl2 (L = β-mercaptoethylamine), on the g-C3N4 affords a monomeric Ni(ii) species involvi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 44  شماره 

صفحات  -

تاریخ انتشار 2015